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Round Robin Analysis for Probabilistic Structural Integrity of
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Performed here 1s a comparative assessment study for the probabilistic fracture mechanics

approach of the pressurized thermal shock of the reactor pressure vessel A round robin con-
sisting of one prerequisite deterministic study and five cases for probabilistic approaches 1s

proposed, and all organizations interested are invited The problems are solved by the pai-

ticipants and their results are compared to 1ssue some recommendation of best practices and to

assure an understanding of the key parameters 1n this type of approach, like transient description

and frequency, material properties, defect type and distribution, fracture mechanics methodology
ete, which will be useful 1n the justification through a probabilistic approach for the case of a
plant over-passing the screening criteria Six participants from 3 organizations responded to the
problem and their results are compiled and analyzed in this study

Key Words : Probabilistic Analysis, Pressurized Thermal Shock, Reactor Pressure Vessel, Stress
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1. Introduction

A reactor pressure vessel 1s a critical compo-
nent of nuclear power plant It contains fuel ass-
emblies and reactor vessel internals and provides
flow paths for the coolant of high temperature
and high pressure during normal operation. It 1s
designed and manufactured according to strict re-
quirements and regulations Therefore, the struc-
tural mtegrity of the reactor vessel 1s the most
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active research subject {Jhung and Park, 1999,
Jhung et al, 2003)

Since the Rancho Seco transient 1n 1978, a pres-
surized thermal shock (PTS) has been designated
as a severe safety issue A pressurized thermal
shock mvolves a transient i which severe over-
cooling causes a thermal shock to the vessel,
while the pressure 1s either maitained high or
the system 1s repressurized during the transient
The thermal stress due to the rapid cooling of the
vessel walls in combmation with the pressure
stress results in large tensile stresses which are
maximum at the mside surface of the vessel At
temperature below ml ductilty temperature of the
vessel material, the combination of the pressure
and thermal stresses could cause crack propaga-
tion through the vessel wall because of the de-
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crease it fracture toughness. Therefore, it is nec-
essary to evaluate a structural integrity of a reac-
tor pressure vessel (RPV) under a pressurized
thermal shock event.

To verify the structural integrity of the reactor
vessel against the PTS transients, industries, re-
search centers and regulatory bodies introduce
their own methodologies, which need to be veri-
fied. In this case, a comparative assessment study
is a powerful tool to evaluate the validity of the
proposed approaches. Therefore a round robin

PROSIR (Probabilistic Structural Integrity of

RPV) is proposed by OECD/NEA PWG-3 IAGE
Metal Group (Faidy, 2003) as a complementary
step to FALSIRE (Bass et al,, 1996) and 1CAS
(Sievers and Schulz, 1999) program on the RPV
integrity, and all parties concerned are requested

to participate in. It brings together & group of

experts from research, utility and regulatory or-
ganization to perform a comparative evaluation
of analysis methodologies employed in the as-
sessment of RPV integrity under PTS loading
conditions. Within the comparative study, an-
alyses of temperature and stress distributions in
the vessel wall are performed according to the
given materal properties and the postulated crack
and transients. For the crack, a fracture mec-
hanics assessment is performed to determine the
probability of crack initiation (PCI}. Random
parameters considered are initial K Typr, copper,
phosphorus and nickel contents, K Typr shift, flu-
ence elc.

This paper compiles the results provided by
participants in Korea, generating some general
results for the probabilistic fracture mechanics an-
alysis of the PTS. Emphasis in the study is placed
on the comparison of different approaches to
RPV probabilistic integrity assessment employ-
ed by the nuclear technology community.

Table 1 Chemical composition and initial 7 Twpr

2, Problem Definifion

2,1 Reactor vessel

The reactor vessel considered in the analysis is
typical 3-loop PWR with 4n inner surface radius
of 1994 mm, 4 base metal thickness of 200 mm
and a cladding thickness of 7.5 mm. The con-
tents of copper, nickel and phosphorus which
augment radiation embrittlement are shown in
Table | with their corresponding uncertainties.
Also irradiation shift formula is defined as Egs.
(1} and (2) for the base mezal and welds, respec-
tively (Faidy, 2003}.
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where P, Cu and Ni are weight percent of
phosphorus, copper and nickel and ¢ is the
fiuence in n/m? divided by 10%. The uncertainties
of AR Twpr are assumed to be 10C and 6C for
base metal and welds, respectively.

The crack postulated is surface breaking crack
of 19.5mm depth X117 mm length [or semi-elli-
ptical through clad crack as shown in Fig. 1. The
orientation is longitudinal or circumferential with
the base case of longitudinal direction.

2.2 Transients
Two overcooling transients due to assumed
leaks are defined as in Fig. 2, for which axisy-
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mmetric loading conditions are assumed. One is a
transient derived from either of the sequences
from small loss of coolant accident {(SBLOCA) at
full power. As shown in Fig. 2, the temperature
starts to decrease with cold emergency cooling
water injection. System pressure decreases rapidly
because the coclant flow rate through the break
was greater than the charging and emergency
cooling water flow rate. The final coolant tem-
perature is about 7°C. The other transient is ty-
pical PTS with re-pressurization. The tempera-
ture and pressure start to decrease but at a certain
time, about 7200 seconds after the transient be-
gan, the system pressure increases rapidly and it
is maintained and slow heating occurs, which
shows typical characteristics of the PTS transient.
In this case pressure is assumed to be a dominant
factor.

2.3 Prerequisite study

A deterministic approach based on the mean
values of each random parameter is proposed as
a prerequisite to assure a perfect fitting at this
level of all interesting participants. The crack is
located in a longitudinal weld. The crack initia-
tion of surface crack is investigated by direct
comparison of X; and Kic. Outputs are required
to be prepared such as crack initiation time in the
transient, crack tip temperature, toughness at this
time and K, versus time etc. This kind of study
is assumed to be a good approach to eliminate
the possibility of error which may be encountered
in the probabilistic approach by discussing the
deterministic results with the different partners
before moving to the major round robin.

24 Major round robins

241 RRI1

This round robin covers toughness property
distribution versus aging. The random parame-
ters are initial & Twpr, copper, phosphorus and
nickel contents and R Typr shift. The results
required are RTypr distributions of mean value
and standard deviation for different Jevels of flu-
ence (RR1-a). Also, fluence may be included in
the random parameters above for different levels
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of RPV age (RR1-b).

242 RR2

The PCI versus time for PTS transient is in-
vestigated in this round robin using toughness
distribution from RRI1. The non-random para-
meters are vessel, geometry, defect, transient, flu-
ence decrease and material properties. For the
fracture mechanics analysis, elastic computation
with no plasticity correction is recommended
with the assumption that crack initiation occurs
only at the deepest point. The results required are
the PCI for one defect in welds or in basc metal
versus vessel age and the time in the transient of
the maximum PCL

243 RR3

SBLOCA is investigated in this rcund robin
using the same random and non-random para-
meters of RR2.

244 RR4

The PCI versus time for one crack in a crack
size distribution is investigated in this round
robin using the random parameters of RR2 and
defect aspect ratio of ¢/2/=1/6. The flaw size
distribution of PNNL as shown in Fig. 3 is used
as a base case. The non-random parameters and
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Fig. 3 Conditional distributions of flaw depth

dimensions

fracture mechanics methodelogy are the same
as RR2. The results required are PCIl for one
defect in welds or in base metal versus vessel age
for PTS transient and time in the transient of the

maximum PCI.

2.5 Sensitivity study

Several parametric studies are proposed to in-
vestigate the influence of certain parameters on
the results of the main tasks. Considered are
crack location, flaw distribution, base metal/
welds, R Twpr shift formula, residual stress, mas-
ter curve or other random variables. This study is
performed on a volunteer basis,

3. Analysis

3.1 Analysis method

The schematic diagram of the probabilistic
fracture mechanics analysis 1s shown in Fig. 4.
As shown in Fig. 4, the analysis consists of two
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Fig. 4 Schematic diagram of the probabilistic
fracture mechanics analysis
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parts, such as the deterministic and probabilistic
fracture mechanics analysis In the deterministic
analysis part, the temperature profiles along the
thickness of the reactor pressure vessel are cal-
culated for the given thermal-hydraulic boun-
dary conditions The distribution of stresses [rom
various sources like thermal, pressure, and resi-
dual stresses are separately calculated The res-
ulting stress 1intensity factors from those stress
components are calculated and added to give the
applied stress intensity factors K; at the tip of
the flaws In the probabilistic analysis part, vari-
ety of statistical parameters such as flaw size,
neutron fluence, copper and nickel contents, and
R Typr are simulated for each hypothetical reac-
tor pressure vessel From temperature profile and
RTypr, the mean K¢ and Kiu at the tip of the
flaws are calculated using the equation derived
from the lower-bound fracture toughness

Finally, fracture toughness values are sumulat-
ed to be compared with the applied stress in-
tensity factors at the tip of the flaws If K 1s
larger than K, flaw 1s assumed to initiate and
grow a certain distance Then, at the new flaw
size, new values of BT wr, K; and K are si-
mulated and compared If A; 1s smaller than
K, flaw 15 considered to be arrested Otherwise,
flaw 1s 1ncreased again and the arrest check 1s
repeated

By repeating the above analysis millions of
tumes, statistically significant conditional prob-
ability of the vessel failure for a specific thermal
hydraulic boundary condition 1s determined as
the number of vessels failed divaded by the total
number of vessels simulated

3.2 RTypr calculation

Ihe reference temperature of ml-ductihity tran-
sitton R Twpr 18 given by the following expres-
sion

RTupr=RTipn t AR Typr + M (3)

where K Twpre 15 the mean value for the nitial
(unirradiated) value of B Twpr for the RPV re-
gron 1n which the flaw resides, and AR Twpr 1s
the 1ncrease 1n K Twpr due to irradiation-induced

Copyright (C) 2005 NuriMedia Co., Ltd.

embrittlement, which s a function of the copper
and nickel content and neutron fluences corre-
sponding to the RPV region in which the flaw
resides The neutron fluence 15 attenuated to the
crack tip and 1s calculated in accordance with
Regulatory Guide 199, Revision 2 (USNRC,
1988) M 13 the margin which considers the
uncertainties of B Typre and AR Twpr, and 1s
calculated as,

M=ERRTNY(SDrr.)*+ (SDsrr.)® (4)

where SDgr.., and SDapr.. are 1 standard de-
viation uncertanty for mean value of K 7Twom
and AR Typr, respectively. ERRTN 1s sampled
from a Gaussian distribution that has a mean
value of 0, a standard deviation of 1, and 1s
truncated at 3 standard deviations Therefore,
ERRTN vanies between —3 and 43 and 15 simu-

lated once per vessel anom)2+(SDARﬂw)2
1s the | standard dewiation uncertainty. Multi-
plying 1t by ERRTN increases the uncertainty
to 3 standard dewviation SDgr.. and SDapr..
are combined as the square root of the sum of
the squares since they are assumed to be inde-
pendent

3.3 Participants

Six participants from 3 organizations presented
the results Parttcipants represent all parties n-
terested 1n the PTS analysis such as the industry
party, research institute and regulatory body 1n
Korea (Table 2) Participants that provided an-
alysis results are identified only by a numeric
code 1 the tables and comparative plots This
identification approach preserves anonymuty of
the contributing participants regarding analysis
results ‘The computer codes and approaches em-
ployed by the participants are summanzed n
Table 3, which are subdivided mto structural
analysis, model used and probabilistic analysis
categories Most of partwipants employed finite
element method using commercial codes for the
structural analyses as shown m Table 3 The other
participants used their own PTS-purpose com-
puter codes employing analytical method For
the probabilistic analysis all participants used
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Table 2 Organizations participating in the round robin analysis

Organization

E-mail

Korea Institute of Nuclear Safety

chjang @kins re kr, altong @kans re kr

Korea Atomic Energy Research Institute

Jhkiml2@kaen re kr, kjwook @kaert.re kr

Korea Power Engineering Company

csg@Xkopec co kr, ymkim S @kopec co kr

Table 3 Computer codes and approaches 1n the round robin analysis

Participant Structural Analysis Model Probabilistic
Heat transfer Stress Fracture Mechanies Analysis

1 PREVIAS PREVIAS PREVIAS® 1-D PREVIAS
2 ABAQUS ABAQUS Influence Function Method 2-D Fortran
3 ABAQUS ABAQUS Influence Function Method 3-D PFAP 10
4 ABAQUS ABAQUS ABAQUS 3-D Excel
5 PROBie-Rx PROBle-Rx PROBie-Rx** I-D PROBie-Rx
6 FAVOR 24 FAVOR 24 FAVOR 24*** 1-D Origim

® (Jung et al, 2003)  ##* (Jang et al, 2004)
their own method, which is incorporated 1n their
own computer code using Fortran program or
commercial database program such as Excel

4, Results and Discussion

To perform probabilistic fracture analysis for
a crack 1n a reactor vessel wall, the time history
of stress distribution 1n the vessel wall due to the
tempet ature and pressure transtent should be esti-
mated If the stress analysis at each tume step s
carried out 1n the Monte Carlo simulation pro-
cess, the ime consumption would be excessive
To avord this, the stress analysis should be car-
ried out before Monte Carlo simulation and the
stress distribution along the vessel wall at each
time step should be appioximated to a 3rd order
polynomial equation, as follows (ASME, 1998),

o=Aot A {x/a) + Aslx/a)?+ Aslx/a)®

where x 18 the distance through the wall thickness
direction measured from the inner surface (0<x/
a<l), and Ag As As Az are constants

The stress intensity factor for a surface flaw 15
then calculated by applying following equation ;

Er=({ Aot A) Got A Grt AaGGr AaG] % (6)

#% % {(Dickson and Williams, 2003)

where Ap 1s the nternal vessel pressure, (v, (7,
(72, (3 are free surface correction factors, and &
1s the flaw shape parameter using the following
equation ,

Q=1+4 593(%)165—@ (7}

where [ 1s the major axis of the flaw, g/ 1s the
flaw aspect ratio and g, 1s the plastic zone cor-
rection factor calculated using the following equa-
tion

av=g [{AGot AGit AsGot AsGs) /0]’ (8)

where gy 18 the material yield strength

But, the stress intensity factor obtamed by this
method varies according to how the stress profile
i the vessel wall 1s approximated because of the
stress difference between clad region and base
metal region as shown m Fig 5 If the stress in
the clad 15 much higher than that in the base
metal, the approximated stress obtained by 3rd
polynomial curve fitting with all nodal stresses
1s overestimated (Approx~l) On the contrary, 1f
the cladding stress 1s 1gnored the approximated
stress lo underestimated {Approx-2) Approx-2
of Fig 5 1s the case that the mean stress at the
boundary of the clad and base metal 1s consider-
ed as the only clad stress The resulting stress
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intensity factors for the different approximation
methods are shown in Fig. 6, which shows that
stress approximation should be carefully carried
out considering the stress profile in both the clad
and base metal.

Mecanwhile, one of the participants used differ-
ent approach to calculate the stress intensity fac-
tor (Jang et al., 2003). He calculated the stresses
from various sources, such as thermal, pressure
and residual stresses. He further divided the ther-
mal stress components into clad stress confined
within the narrow cladding and base stress. The
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stress intensity factor components calculated for
the stress components are added to be the stress
intensity factor at the crack tip. In this approach,
the uncertainty associated the stress approxima-
tion is avoided.

Temperature and stress intensity factor histories
at crack tip from participants are compared in
Figs. 7 and 8, respectively. The temperature is
almost the same at crack tip but the stress inten-
sity factors have some differences among partici-
pants. Even though the stresses are the same, the
methods to calculate the stress intensity factor are
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different as shown in Table 3, generating some
differences among participants. Alsc_. determinis-
tic approaches ameng participants are a little
bit dilferent as shown in Table 4. This may be a
major factor 1o affect the results of the prob-
abilistic approaches.

The comparison of methods to calcuiate the
adjusted R Twpr is shown in Table 5. All par-
ticipants except participant ¢ used the tormula of
Eq. (3). In this case the mean value of X Typn
and mean formula of B Txsr are used. Participant
6 simulated K Twpro and R Txpr. In this case the
uncertdinties of & Twpr and K Twpr are alrcady
included and therefore it is not necessary to in-

clude margin term Af 1o calculate K 7xpr. These
two approaches should give the same results as
shown in Fig. 9. Pdl[l(,lpan[ I simulated K Twapre
and the value of \'( S])Mi_

margin ferm and at the same time used depth as
a random variable for AR Twpr, which caused big
difference in the adjusted R Twpr calculation. The
high R Tanr of participant 1 generates low value
of Kic and therefore high value of the PCI.

The maximum calculated conditional prob-
abilitics of crack initiation as shown in Fig. 10,
especially for small vajues of fluence, have the
largest scatter, L.e. about a factor of 100 when not

considering the result of participant 1. which is
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Table 5 Comparison of method to calculate K Twpr
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presumably duc to the over-estimation of R Tapr
by using different schemes of for the RTwor
simulation, The results of participants 4 and 5 are
relatively lower than those of others and show
strong dependency on the fluence level. The
maximum PCI considering defect aspect ratio is
shown in Fig. 11. It has similar trend described
above but is so small compared to that of Fig. 10
and therefore it is evident that including random
variable of defect aspect ratio decreases the PCI
significantly, more than 2 orders of magnitude in

1

this case.

The PCI versus time is shown in Fig. 12 for
fluence of 3 X 10® n/m®. The time in the transient
of the maximum PCI for SBLOCA comes earlier
than that for PTS, which can be predicted from
Fig. 2 where maximum PCI occurs at the instant
of rapid decrease of pressure and temperature. But
for PTS transient the instant of repressurization is
more important than that of rapid decrease of
temperature and/or pressure.

Several sensitivity analyses investigating the
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effects of parameters such as crack location,
flaw distribution, base metal/welds, 7 Tyor shift,
residual stress and master curve are performed.
Figure 13 shows the maximum PCI for crack
location. Circumferential and longitudinal cracks
are assumed and the maximum PCI of circum-
ferential crack is lower than that of longitudinal
crack by one to two orders of magnitude. The
stresses on circumferential flaw due to pressure
are one half of those on longitudinal flaw and
therefore lower stress intensity factors are ob-
tained. If the transient is dominated by pressure
loading like typical PTS event, less initiation for
circumferential crack is expected.

Two types of flaw distribution of Fig. 3 are
considered where Marshall assumes larger flaws,
which are subjected to high stress intensity factors
and therefore higher initiation occurs as shown in
Fig. 14.

The comparison of R Twpr shift formula is
made in Fig. 15, where AR Twpr of Regulatory
Guide 1.99 is considerably small compared with
that of Egs. (1) and {2). Also the maximum PCl
of Regulatory Guide 1.99 is considerably small as
shown in Fig. 16 by two orders of magnitude
compared with that of PROSIR where Eqs. (1}
and (2) are used. This may indicate that & Tar
shift formula of Regulatory Guide [.99 may not
be conservative in a certain circumstance.

645

The maximum probabilities of crack initiation
are obtained for different toughness curves of
Fig. 17 where mean values of Kic and K4 from
PROSIR and master curve (USNRC, 1998) are
compared. When the same values of K Twnr are
uscd, the maximum PC1 for master curve is larger
than that of PROSIR by one to two orders of
magnitude and the difference gets more significant
for the lower level of fluence as shown in Fig. 18.
This is due to the fact that mean minus 3 standard
deviation valucs of fracture toughness for master
curve are lower than those of PROSIR even
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though mean curves are opposite for the same
R Twor (Fig. 19). Also it is noted that the level of
fluence do not affect the PCI significantly for the
case of master curve.

The effect of residual stress on the PCI is
investigated. The residual stress of Fig. 20 is
assumed and the maximum probabilities of crack
initiation are obtained as shown in Fig. 21.
Residual stress increases the stress intensity factor
and crack initiation. The maximum PC! increased
by the factor of about 2 by including the residual
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stress. The effect of residual stress could have
been greater for the less significant PTS transient,
but for the relatively severe transient like typical
PTS event with pressure dominant, the effect on
the PCI is not so significant because most of the
weak links are already broken,

The maximum probabilities of crack initiation
of welds are larger than those of base metal for
Regulatory Guide 1.99 by about one order of
magnitude but they are almost the same for
PROSIR. This kind of difference between base
metal and welds is shown for all maximum pro-
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babilities of crack mittation of Figs 18 and 21
whete R7Typr shilt formula from Regulatory
Guide 1 99 15 used urespective of toughness curve
or residual stress.

5. Conclusions

Round robin analyses of the reactor pressure
vessel under the pressurized thermal shock are
performed using the mformation of OECD/NEA
PWG3 Two transients and one crack are postu-
lated and the probabilistic fracture mechanics
analyses are performed to generate the condition-
al probabilities of crack mitiatton Results from
participants are compared generating following
¢onclusions

{1) The calculated probabilities of crack initi-
ation have the scafter differing among partici-
pants, which are apparemly caused by the differ-
ence of stress intensity factors among participants
and the selection of different input parameters for
R Tupr stmulation

{2) Special care should be taken to calculate
the stress intensity factor by approximating the
stress distribution of the cladding region by poly-
nomial expression

(3} The maximum PCI may be lowered by the
factor of 100 according to the crack location, flaw
distritbution and R Twpr shift formula

(4) The effect of increasing fluence on the PCI
15 small when using the master curve method
Therefore for the life entension 1t would be a
good try 1o adopt a master curve for the fracture
toughness

(5) The maximum PCI of welds 15 always
larger than that of base metal by the factor of
about 10 when R Twpr shuft formula from Regu-
latory Guide [ 99 1s used
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